Question 1: Show that: tan \ 10^o tan \ 15^o tan \ 75^o tan \ 80^o = 1

Answer:

tan \ 10^o \ tan \ 15^o \ tan \ 75^o \ tan \ 80^o

= tan \ (90^o - 80^o) \ tan \ (90^o - 75^o) \ tan \ 75^o \ tan \ 80^o

= cot \ 80^o \ cot \ 75^o \ tan \ 75^o \ tan \ 80^o

= 1 . Hence proved.

\\

Question 2: Show that: sin \ 42^o .sec \ 48^o + cos \ 42^o .cosec \ 48^o = 2

Answer:

sin \ 42^o .sec \ 48^o + cos \ 42^o .cosec \ 48^o

= sin \ 42^o .sec \ (90^o - 42^o) + cos \ 42^o .cosec \ (90^o - 42^o)

= sin \ 42^o .cosec \ 42^o + cos \ 42^o .sec \ 42^o

= 1 + 1 = 2. Hence proved.

\\

Question 3: Show that: \frac{sin \ 26^o}{sec \ 64^o} + \frac{cos \ 26^o}{cosec \ 64^o} = 2

Answer:

\frac{sin \ 26^o}{sec \ 64^o} + \frac{cos \ 26^o}{cosec \ 64^o}

= \frac{sin \ 26^o}{sec \ (90^o - 26^o)} + \frac{cos \ 26^o}{cosec \ (90^o - 26^o)}

= \frac{sin \ 26^o}{cosec \ 26^o} + \frac{cos \ 26^o}{sec \ 26^o}

= sin^2 \ 26^o + cos^2 \ 26^o = 1 . . Hence proved.

\\

Question 4: Express in terms of angles between 0^o and 45^o : sin \ 59^o + tan \ 63^o

Answer:

sin \ 59^o + tan \ 63^o = sin \ (90^o - 31^o) + tan \ (90^o - 27^o) = cos \ 31^o + cot \ 27^o

\\

Question 5: Express in terms of angles between 0^o and 45^o cosec \ 68^o + cot \ 72^o

Answer:

cosec \ 68^o + cot \ 72^o  = cosec \ (90^o - 32^o) + cot \ (90^0 - 28^o) = sec \ 32^o + tan \ 28^o

\\

Question 6: Express in terms of angles between 0^o and 45^o cos \ 74^o + sec \ 67^o

Answer:

cos \ 74^o + sec \ 67^o = cos \ (90^o - 16^o) + sec \ (90^o - 23^o) = sin \ 16^o + cosec \ 23^o

\\

Question 7: \frac{sin \ A}{sin\ (90^o-A)} + \frac{cos \ A}{cos\ (90^o-A)} = sec \ A cosec \ A

Answer:

LHS = \frac{sin \ A}{sin\ (90^o-A)} + \frac{cos \ A}{cos\ (90^o-A)}

= \frac{sin \ A}{cos \ A} + \frac{cos \ A}{sin \ A}

= \frac{sin^2 \ A + cos^2 \ A}{sin \ A. cos \ A}

=  sec \ A cosec \ A = RHS. Hence proved.

\\

Question 8:

sin \ A  \ cos \ A - \frac{sin \ A \ cos\ (90^o-A) \ cos \ A}{sec\ (90^o - A)} - \frac{cos \ A \ sin\ (90^o-A) \ sin \ A}{cosec\ (90^o - A)} = 0

Answer:

LHS = sin \ A  \ cos \ A - \frac{sin \ A \ cos\ (90^o-A) \ cos \ A}{sec\ (90^o - A)} - \frac{cos \ A \ sin\ (90^o-A) \ sin \ A}{cosec\ (90^o - A)}

sin \ A  \ cos \ A - \frac{sin^2 \ A \ cos \ A}{cosec \ A} - \frac{cos^2 \ A \ sin \ A}{sec\ A}

= sin \ A  \ cos \ A - sin^3 \ A \ cos \ A - cos^3 \ A \ sin \ A

= sin \ A  \ cos \ A - sin \ A  \ cos \ A\ (sin^2 \ A  + cos^2 \ A)

= sin \ A  \ cos \ A - sin \ A  \ cos \ A = 0 = RHS. Hence proved.

\\

Question 9: For \triangle ABC , show that: sin \ (\frac{A + B}{2}) = cos \  (\frac{C}{2})

Answer:

LHS = sin \ (\frac{A + B}{2}) = sin \ (\frac{180 - C}{2}) = sin \ (90 - \frac{C}{2}) = cos \ \frac{C}{2} = RHS. Hence proved.

\\

Question 10:  For \triangle ABC , show that: tan \ (\frac{B + C}{2}) = cot \  (\frac{A}{2})

Answer:

LHS = tan \ (\frac{B+C}{2}) = tan \ (\frac{180 - A}{2}) = tan \ (90 - \frac{A}{2}) = cot \ \frac{A}{2} = RHS. Hence proved.

\\

Question 11: In \triangle ABC is the right angles at B. Find the value of:

\frac{sec \ A . cosec \ A - tan \ A . cot \ C}{sin \ B}

Answer:

\frac{sec \ A . cosec \ A - tan \ A . cot \ C}{sin \ B}

= \frac{sec \ A . cosec \ (90^0 -A) - tan \ A . cot \ (90^0 -A)}{sin \ 90^o}

= \frac{sec \ A . sec \ A - tan \ A . tan \ A}{1}

= sec^2 \ A - tan^2 \ A

= \frac{1 - sin^2 \ A}{cos^2 \ A}

= 1

\\

Question 12: Find x if: sin \ x = sin \ 60^o cos \ 30^o - cos \ 60^o sin \ 30^o

Answer:

sin \ x = sin \ 60^o cos \ 30^o - cos \ 60^o sin \ 30^o

\Rightarrow sin \ x = sin \ 60^o cos \ (90^o - 60^o) - cos \ 60^o sin \ (90^o - 60^o)

\Rightarrow sin \ x = sin^2 \ 60^o - cos^2 \ 60^o

\Rightarrow sin \ x = (\frac{\sqrt{3}}{2})^2 - (\frac{1}{2})^2

\Rightarrow sin \ x = \frac{1}{2} = sin \ 30^o

\Rightarrow x = 30^o

\\

Question 13: Find x if: sin \ x = sin \ 60^o cos \ 30^o + cos \ 60^o sin \ 30^o

Answer:

sin \ x = sin \ 60^o cos \ 30^o + cos \ 60^o sin \ 30^o

\Rightarrow sin \ x = sin \ 60^o cos \ (90^ - 60^o) + cos \ 60^o sin \ (90^ - 60^o)

\Rightarrow sin \ x = sin^2 \ 60^o + cos^2 \ 60^o

\Rightarrow sin \ x = 1

\Rightarrow x = 90^o

\\

Question 14: Find x if: cos \ x = cos \ 60^o cos \ 30^o - sin \ 60^o sin \ 30^o

Answer:

cos \ x = cos \ 60^o cos \ 30^o - sin \ 60^o sin \ 30^o

\Rightarrow cos \ x = cos \ 60^o cos \ (90^o - 60^o) - sin \ 60^o sin \ (90^o - 60^o)

\Rightarrow cos \ x = cos \ 60^o sin \ 60^o - sin \ 60^o cos \ 30^o

\Rightarrow cos \ x = = 0

\Rightarrow x = 90^o 

\\

Question 15: Find the value of x if: tan \ x = \frac{tan \ 60^o - tan \ 30^o}{1+ tan \ 60^o tan \ 30^o}

Answer:

tan \ x = \frac{tan \ 60^o - tan \ 30^o}{1+ tan \ 60^o tan \ 30^o}

\Rightarrow tan \ x = \frac{sin \ 60^o. cos \ 30 - sin \ 30^o. cos \ 60}{cos \ 60.cos \ 30+ sin \ 60^o. sin \ 30^o}

\Rightarrow tan \ x = \frac{sin \ 60^o. cos \ (90^o - 60^o) - sin \ (90^o - 60^o). cos \ 60}{cos \ 60.cos \ 30+ sin \ 60^o. sin \ 30^o}

\Rightarrow tan \ x = \frac{sin^2 \ 60^o -  cos^2 \ 60}{cos \ 60.cos \ 30+ sin \ 60^o. sin \ 30^o}

\Rightarrow tan \ x = \frac{(\frac{\sqrt{3}}{2})^2 - (\frac{1}{2})^2}{2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2}}

\Rightarrow tan \ x =  \frac{2}{\sqrt{3}}

Therefore x = 30^o

\\

Question 16: Find the value of x if: sin \ 2x = 2 \ sin \ 45^o \ cos \ 45^o

Answer:

sin \ 2x = 2 \ sin \ 45^o \ cos \ 45^o

\Rightarrow sin \ 2x = 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}

\Rightarrow sin \ 2x = 1

\Rightarrow 2x = 90^o \Rightarrow x = 45^o

\\

Question 17: Find the value of x if: sin \ 3x = 2 \ sin \ 30^o \ cos \ 30^o

Answer:

sin \ 3x = 2 \ sin \ 30^o \ cos \ 30^o

\Rightarrow sin \ 3x = 2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2}

\Rightarrow sin \ 3x = \frac{\sqrt{3}}{2}

\Rightarrow 3x = 60^o \Rightarrow x = 20^o

\\

Question 18: Find x if: $latex cos \ (2x-6^o) = cos^2 \ 30^o – cos^2 \ 60^o &s=0$

Answer:

cos \ (2x-6^o) = cos^2 \ 30^o - cos^2 \ 60^o

\Rightarrow cos \ (2x-6^o) = sin^2 \ 60^o - cos^2 \ 60^o

\Rightarrow cos \ (2x-6^o) = (\frac{\frac{\sqrt{3}}{2}}{2})^2 - (\frac{1}{2})^2

\Rightarrow cos \ (2x-6^o) = \frac{1}{2}

\Rightarrow 2x - 6 = 60 \Rightarrow x = 33^o

\\

Question 19: Find the value of A \ where \  0^o \leq A \leq 90^o sin \ (90^o - 3A) . cosec \ 42^o = 1

Answer:

sin \ (90^o - 3A) . cosec \ 42^o = 1

\Rightarrow sin \ (90^o - 3A) = sin \ 42^o

\Rightarrow 90^o - 3A = 42^o \Rightarrow A = 16^o

\\

Question 20: Find the value of A \ where \  0^o \leq A \leq 90^o cos \ (90^o - A) . sec \ 77^o = 1

Answer:

cos \ (90^o - A) . sec \ 77^o = 1

\Rightarrow cos \ (90^o - A) = cos \ 77^o

\Rightarrow (90^o - A) = 77^o \Rightarrow A = 13^o

\\

Question 21: Prove that: \frac{cos \ (90^o-A).cos \ A}{cot \ A} = 1 - cos^2 \ A

Answer:

LHS = \frac{cos \ (90^o-A).cos \ A}{cot \ A}

= \frac{sin \ A.cos \ A . sin \ A}{cos \ A}

= sin^2 \ A = 1- cos^2 \ A = RHS. Hence proved.

\\

Question 22: Prove that: \frac{sin \ A . sin \ (90^o-A)}{tan \ (90^o-A)} = 1 - sin^2 A

Answer:

LHS = \frac{sin \ A. sin \ (90^o-A)}{tan \ A}

= \frac{sin \ A.cos \ A . cos \ A}{sin \ A}

= cos^2 \ A = 1- sin^2 \ A = RHS. Hence proved.

\\

Question 23: Evaluate: \frac{sin \ 35^o.cos \ 55^o + cos \ 35^o. sin \ 55^o}{cosec^2 \ 10^o - tan^2 \ 80^o}     [2010]

Answer:

\frac{sin \ 35^o.cos \ 55^o + cos \ 35^o. sin \ 55^o}{cosec^2 \ 10^o - tan^2 \ 80^o}

= \frac{sin \ 35^o.cos \ (90^o - 35^o) + cos \ 35^o. sin \ (90^o - 35^o)}{cosec^2 \ 10^o - tan^2 \ (90^o - 10^o) }

= \frac{sin^2 \ 35^o + cos^2 \ 35^o}{1 - cos^2 \ 10} \times sin^2 \ 10

= \frac{sin^2 \ 10}{1- cos^2 \ A} = 1

\\

Question 24: Without using trigonometric tables, evaluate

sin^2 \ 34^o + sin^2 \ 56^o + 2 tan \ 18^o. tan \ 72^o - cot^2 \ 30^o     [2014]

Answer:

sin^2 \ 34^o + sin^2 \ 56^o + 2 tan \ 18^o. tan \ 72^o - cot^2 \ 30^o

= sin^2 \ 34^o + cos^2 \ 34^o + 2 tan \ 18^o. cot \ 18^o - cot^2 \ 30^o

= 3  - (\sqrt{3})^2 = 0

\\

 

Advertisements